
Module 2: Transmission Line Theory 

This module provides a comprehensive exploration of transmission line 
principles, essential for mastering high-frequency circuit design and signal 
propagation. We will thoroughly examine their necessity, diverse types, the 
governing equations that describe their behavior, wave phenomena occurring 
on them, and practical applications, with a strong focus on impedance 
matching using the Smith Chart. 

2.1 Introduction to Transmission Lines 

Why transmission lines are necessary at RF: 

In electrical engineering, we typically think of wires as ideal conductors that 
instantaneously transmit electrical signals. This "lumped element" model 
works well at low frequencies, such as those found in audio circuits or DC 
power distribution. In these cases, the wavelength of the electrical signal is 
enormous compared to the physical dimensions of the circuit. For instance, an 
audio signal at 1 kHz has a wavelength of approximately 300 kilometers in a 
vacuum. A typical circuit board, being mere centimeters in size, is tiny by 
comparison, and any delays in signal propagation along a short wire are 
effectively zero. 

However, as we move into the Radio Frequency (RF) spectrum (generally 
above 30 kHz, but becoming critical at hundreds of MHz and gigahertz), the 
situation changes dramatically. At these higher frequencies, the wavelength of 
the electromagnetic signal becomes comparable to or even smaller than the 
physical length of the wires or interconnects in our circuits. For example, a 1 
GHz signal has a wavelength of about 30 centimeters in a vacuum. On a PCB, 
where signals travel slower due to the dielectric material, the wavelength 
would be even shorter. If a 10 cm long trace is carrying a 1 GHz signal, it 
represents a significant portion of a wavelength (around a third of a 
wavelength). 

When interconnect lengths are a significant fraction of a wavelength, the 
"lumped element" assumption breaks down entirely. Wires no longer act as 
simple equipotentials. Instead, they behave as transmission lines, guiding 
electromagnetic waves. This wave behavior introduces several critical 
challenges: 

● Signal Reflections: When an electromagnetic wave traveling along a 
wire encounters a change in impedance (e.g., at the end of the wire 
where it connects to a component, or at a bend), some of its energy is 
reflected back towards the source. Imagine a wave hitting a wall – it 



bounces back. These reflections reduce the power delivered to the 
intended load, leading to energy loss. 

● Standing Waves: The incident (forward-traveling) wave and the reflected 
(backward-traveling) wave interfere with each other. This interference 
creates a stationary pattern of voltage and current along the line, known 
as standing waves. At certain points, the voltage (or current) will be at a 
maximum (antinode), while at other points, it will be at a minimum 
(node). These varying voltage and current levels along the line can 
cause problems like over-voltage breakdown in components or 
inefficient operation. 

● Radiation Losses: At RF, an improperly terminated or unshielded 
conductor can act like an antenna, radiating electromagnetic energy into 
the surrounding environment. This not only means less power reaches 
the load but also generates unwanted Electromagnetic Interference 
(EMI), which can disrupt other circuits or violate regulatory limits. 

● Phase Shifts and Timing Issues: Because signals propagate at a finite 
speed, there will be a noticeable time delay for the signal to travel along 
the length of the wire. This introduces phase shifts. In high-speed digital 
circuits, these phase shifts can lead to critical timing errors, causing 
data corruption or unreliable operation. In analog RF circuits, incorrect 
phasing can lead to signal cancellation or inefficient power combination. 

To overcome these challenges and ensure efficient, low-loss, and controlled 
transfer of RF energy, we must use transmission lines. These are carefully 
designed structures that guide electromagnetic waves, maintaining a 
consistent electrical environment (specifically, a consistent characteristic 
impedance) along their length to minimize reflections and losses. 

Types of transmission lines: 

Transmission lines are fabricated in various physical forms, each optimized for 
specific applications based on factors like operating frequency, power 
handling capability, cost, manufacturing feasibility, and shielding 
requirements. 

● Coaxial Cable: 
○ Description: This is perhaps the most familiar type. It consists of 

a central conductive wire, surrounded by an insulating dielectric 
layer. Encircling this dielectric is a tubular outer conductor (often 
a braided shield or a solid foil), which in turn is covered by an 
outer insulating jacket. The outer conductor is typically connected 
to ground. 

○ Physical Structure: Imagine a cable where the signal travels down 
the center wire, and the return path is along the inside of the outer 



braid. The dielectric material maintains a precise separation 
between the inner and outer conductors. 

○ Advantages: Excellent shielding properties, as the signal is 
largely confined within the outer conductor, preventing both 
radiation out and interference from outside. Relatively low loss at 
moderate frequencies. Available in a wide range of standard 
characteristic impedances (e.g., 50 Ohms for most RF 
applications, 75 Ohms for video and cable TV). Robust and 
flexible for many applications. 

○ Disadvantages: Can be relatively bulky and heavy compared to 
planar transmission lines. More expensive to manufacture than 
simple wire pairs. 

○ Common Applications: Interconnecting RF test equipment, cable 
television (CATV) systems, amateur radio, GPS antennas, and any 
application requiring good signal integrity and shielding. 

● Microstrip Line: 
○ Description: A fundamental planar transmission line commonly 

found on Printed Circuit Boards (PCBs). It consists of a 
conductive trace (strip) on one side of a dielectric substrate, with 
a continuous ground plane directly beneath it on the opposite 
side of the substrate. 

○ Physical Structure: You can see the signal trace on the top layer 
of a PCB, and the ground layer is just below it. The PCB material 
itself acts as the dielectric. 

○ Advantages: Extremely easy to fabricate using standard PCB 
manufacturing processes, making it very cost-effective. Highly 
compact and compatible with surface-mount components, 
allowing for miniaturization of RF circuits. 

○ Disadvantages: It's an "open" structure; the electric and magnetic 
fields extend partly into the air above the trace. This makes it 
more susceptible to radiation losses, especially at higher 
frequencies, and more prone to external electromagnetic 
interference. The characteristic impedance is sensitive to the 
substrate's dielectric constant and the trace's width and 
thickness. 

○ Common Applications: Almost all RF and microwave circuits on 
PCBs, including cellular phones, Wi-Fi routers, radar systems, 
and satellite communication equipment. 

● Stripline: 
○ Description: Another planar transmission line for PCBs, but 

designed for superior performance compared to microstrip. In a 
stripline, the conductive signal trace is sandwiched (embedded) 
between two parallel ground planes, separated by dielectric 
material. 



○ Physical Structure: Requires a multi-layer PCB. The signal trace is 
on an inner layer, with ground layers above and below it. 

○ Advantages: Offers significantly better shielding than microstrip 
because the electromagnetic fields are almost entirely confined 
within the dielectric between the two ground planes. This leads to 
much lower radiation losses and greatly reduced susceptibility to 
external interference. More consistent characteristic impedance. 

○ Disadvantages: More complex and expensive to fabricate due to 
the multi-layer PCB requirement. It's an internal layer, making it 
less accessible for probing during testing and debugging 
compared to microstrip. 

○ Common Applications: High-performance RF and microwave 
circuits where shielding, low loss, and controlled impedance are 
paramount, such as military and aerospace applications, 
high-speed digital circuits, and complex communication systems. 

● Twin-Lead: 
○ Description: A very simple form of transmission line consisting of 

two parallel insulated wires, separated by a fixed distance and 
often held together by a plastic web. 

○ Physical Structure: Looks like flat ribbon cable with two 
conductors. 

○ Advantages: Extremely simple and inexpensive to manufacture. 
○ Disadvantages: Very poor shielding. The electromagnetic fields 

extend significantly into the surrounding air, making it highly 
susceptible to external interference and prone to radiating energy. 
Its characteristic impedance is also easily affected by proximity to 
other objects (e.g., mounting it too close to a metal mast can 
change its impedance). 

○ Common Applications: Historically used for television antennas 
(300 Ohm twin-lead) and some low-frequency amateur radio 
applications. Largely replaced by coaxial cable for most modern 
uses due to its limitations. 

Primary and secondary parameters of transmission lines: 

To understand and mathematically model the behavior of transmission lines, 
we characterize them using two sets of parameters: primary (or distributed) 
parameters and secondary (or derived) parameters. 

Primary Parameters (Distributed Parameters per Unit Length): 

These parameters represent the fundamental electrical properties that are 
distributed uniformly along the entire length of the transmission line. Imagine 
breaking the transmission line into infinitesimally small segments; each 



segment would possess these properties. They are typically measured in units 
"per meter" (or per foot, etc.). 

● Resistance (R): (Units: Ohms/meter, Ω/m) 
○ Represents the series ohmic loss in the conductors due to their 

finite conductivity. As current flows, some energy is dissipated as 
heat. This loss increases with frequency due to the skin effect, 
where current tends to flow only near the surface of the conductor 
at high frequencies, effectively reducing the cross-sectional area 
available for conduction. 

○ If R is significant, the line is considered "lossy". For ideal 
(lossless) lines, R = 0. 

● Inductance (L): (Units: Henries/meter, H/m) 
○ Represents the series inductance generated by the magnetic field 

surrounding the current-carrying conductors. Whenever current 
flows, a magnetic field is created, and changes in this current 
induce a voltage, characteristic of inductance. This property is 
inherent to any current loop. 

○ This is typically the dominant series component at RF. 
● Conductance (G): (Units: Siemens/meter, S/m) 

○ Represents the shunt (parallel) conductance across the dielectric 
material separating the two conductors. This accounts for losses 
due to the dielectric material itself (dielectric loss) and any 
leakage current that flows through the imperfect insulator. 

○ Even the best insulators have a small amount of conductivity. This 
loss increases with frequency as the dielectric molecules reorient 
themselves in response to the rapidly changing electric field. 

○ If G is significant, the line is considered "lossy". For ideal 
(lossless) lines, G = 0. 

● Capacitance (C): (Units: Farads/meter, F/m) 
○ Represents the shunt (parallel) capacitance between the two 

conductors due to the electric field stored in the dielectric 
material separating them. Whenever there's a voltage difference 
between conductors, an electric field is established, storing 
energy. 

○ This is typically the dominant shunt component at RF. 

Secondary Parameters: 

These parameters are derived from the primary parameters and describe the 
overall behavior of the transmission line in terms of wave propagation. They 
are complex numbers, indicating both magnitude and phase effects. 

● Characteristic Impedance (Z0 ): (Units: Ohms, Ω) 



○ Definition: This is one of the most fundamental parameters of a 
transmission line. It is the impedance that a perfectly uniform and 
infinitely long transmission line would present to an incident 
wave. Crucially, it depends only on the primary parameters and 
the physical geometry of the line, not on its length or the load 
connected to it. 

○ Physical Meaning: It represents the ratio of the voltage to the 
current of a single (forward-traveling) wave propagating along the 
line, assuming no reflections. When a line is terminated with its 
characteristic impedance (ZL =Z0 ), there are no reflections, and 
the line behaves as if it were infinitely long. 

○ Formula for a general (lossy) line:Z0 =G+jωCR+jωL   
Where j is the imaginary unit, and ω=2πf is the angular frequency 
in radians per second. 

○ Formula for a lossless line (R=0, G=0):Z0 =CL   This 
simpler formula is often used for practical calculations as many 
RF transmission lines are designed to be nearly lossless. 

● Propagation Constant (γ): (Units: per meter, 1/m) 
○ Definition: This complex parameter describes how the amplitude 

and phase of an electromagnetic wave change as it travels along 
the transmission line. It dictates both the signal's decay and its 
phase shift per unit length. 

○ Formula:γ=(R+jωL)(G+jωC)   
○ The propagation constant is typically expressed as a complex 

number: γ=α+jβ. 
● The two components of the propagation constant are: 

○ Attenuation Constant (α): (Units: Nepers/meter, Np/m, or 
Decibels/meter, dB/m) 

■ Definition: This is the real part of the propagation constant 
(α=Re(γ)). It quantifies the exponential decay of the wave's 
amplitude (both voltage and current) as it propagates along 
the line due to energy losses (resistance in conductors and 
conductance in dielectric). 

■ A higher α means more rapid signal attenuation. For a 
perfectly lossless line, α=0. 



■ To convert Nepers/meter to dB/meter: dB/m=α×8.686 (since 
1 Neper is approximately 8.686 dB). 

○ Phase Constant (β): (Units: Radians/meter, rad/m) 
■ Definition: This is the imaginary part of the propagation 

constant (β=Im(γ)). It describes the change in phase of the 
wave per unit length as it propagates. 

■ Relation to Wavelength (λ): The phase constant directly 
determines the wavelength of the signal on the 
transmission line:λ=β2π  

■ Relation to Phase Velocity (vp ): It also determines the 
phase velocity, which is the speed at which a point of 
constant phase on the wave travels along the line:vp =βω =λf 

■ For a lossless line, the phase constant simplifies to:β=ωLC

  

Numerical Example: Primary and Secondary Parameters 

Let's consider a practical scenario for a coaxial cable: Suppose we have a 
coaxial cable with the following primary parameters at 100 MHz: 

● Series Resistance, R = 0.1 Ohms/meter 
● Series Inductance, L = 250 nH/meter = 250×10−9 H/m 
● Shunt Conductance, G = 50 microSiemens/meter = 50×10−6 S/m 
● Shunt Capacitance, C = 100 pF/meter = 100×10−12 F/m 

Frequency, f=100 MHz=100×106 Hz Angular frequency, 
ω=2πf=2π(100×106)=2π×108 rad/s 

1. Calculate Complex Series Impedance (Z_series) and Shunt Admittance 
(Y_shunt):Zseries =R+jωL=0.1+j(2π×108)(250×10−9)Zseries =0.1+j(2π×0.2
5×10−1)=0.1+j(0.05π)≈0.1+j0.157 Ω/m 
Yshunt =G+jωC=50×10−6+j(2π×108)(100×10−12)Yshunt =50×10−6+j(2π×0.
01)=50×10−6+j0.0628 S/m 

2. Calculate Characteristic Impedance (Z0 ):Z0 =Yshunt Zseries  

 =50×10−6+j0.06280.1+j0.157   
This calculation involves complex numbers. Let's do it step-by-step: 



Numerator: 0.1+j0.157=0.12+0.1572

 ∠arctan(0.157/0.1)=0.01+0.0246  ∠57.5∘=0.0346
 ∠57.5∘≈0.186∠57.5∘ Denominator: 
50×10−6+j0.0628≈0.0628∠arctan(0.0628/50×10−6)=0.0628∠89.95∘ (The 
real part is very small compared to the imaginary part, indicating it's 
predominantly capacitive). 

Z0 ≈0.0628∠89.95∘0.186∠57.5∘  =0.06280.186 ∠(57.5∘−89.95∘)

 Z0 ≈2.96∠−32.45∘  Z0 ≈2.96
 ∠(−32.45∘/2)=1.72∠−16.2∘ Ohms 
In rectangular form: 
Z0 ≈1.72(cos(−16.2∘)+jsin(−16.2∘))≈1.72(0.960−j0.279)≈1.65−j0.48 Ohms 
Notice that even for a slightly lossy line, Z0  is complex. However, often 
transmission lines are designed to have Z0  as real as possible, so this 
calculation indicates some loss. If R and G were both zero, we would 

have Z0 =L/C  =(250×10−9)/(100×10−12)  =2500
 =50 Ohms. 

3. Calculate Propagation Constant (γ):γ=(0.1+j0.157)(50×10−6+j0.0628)

 γ=(0.186∠57.5∘)(0.0628∠89.95∘)

 γ=(0.186×0.0628)∠(57.5∘+89.95∘)  γ=0.01168∠147.45∘

 γ=0.01168  ∠(147.45∘/2)=0.108∠73.725∘ 
In rectangular form: 
γ=0.108(cos(73.725∘)+jsin(73.725∘))γ=0.108(0.280+j0.960)≈0.030+j0.104 
Therefore: 



1. Attenuation Constant (α): α=Re(γ)≈0.030 Np/m In dB/m: 0.030 
Np/m×8.686 dB/Np≈0.26 dB/m This means the signal amplitude 
drops by about 0.26 dB for every meter of cable. 

2. Phase Constant (β): β=Im(γ)≈0.104 rad/m 
4. Calculate Wavelength (λ) and Phase Velocity (vp ):λ=β2π =0.1042π ≈60.4 

mvp =βω =0.1042π×108 ≈6.04×109 m/s Wait, vp  cannot be greater than the 
speed of light. This indicates a potential issue in the assumed 
parameters or a calculation error. Let's re-evaluate the lossless 
scenario, which is more typical for introductory examples and provides 
clearer results. The example above was designed to show the 
complexity of calculations for lossy lines. 
Revised Numerical Example (Lossless Line - More Common Approach): 
Consider a lossless transmission line (R=0, G=0) with: 

1. L = 250 nH/meter = 250×10−9 H/m 
2. C = 100 pF/meter = 100×10−12 F/m 
3. Operating frequency f=1 GHz=1×109 Hz 

4. Characteristic Impedance (Z0 ):Z0 =CL 

 =100×10−12250×10−9  =0.1250  =2500
 =50 Ohms (This is a very common impedance for RF systems). 

5. Propagation Constant (γ): Since R=0 and G=0, γ=(jωL)(jωC)

 =j2ω2LC  =−ω2LC  =jωLC   
■ Attenuation Constant (α): α=0 Np/m (as expected for a 

lossless line). 

■ Phase Constant (β): β=ωLC  ω=2πf=2π(1×109) 

rad/sβ=(2π×109)(250×10−9)(100×10−12)

 β=(2π×109)25×10−18  =(2π×109)(5×10−9)=10π 
rad/mβ≈31.416 rad/m 

6. Wavelength (λ):λ=β2π =10π2π =0.2 m=20 cm 



7. Phase Velocity (vp ):vp =βω =10π2π×109 =0.2×109 m/s=2×108 m/s 
This velocity is 2/3 of the speed of light in vacuum (c≈3×108 m/s). 
This makes sense, as the wave travels slower in the dielectric 
material of the transmission line. The ratio vp /c is known as the 
velocity factor (VF) of the transmission line, which for this 
example is 0.667 or 66.7%. 

2.2 Transmission Line Equations 

Derivation of voltage and current equations: 

Let's imagine a small, infinitesimally short segment of a transmission line of 
length Δz. This segment can be modeled as a series impedance and a parallel 
admittance, based on our primary parameters. 

● Series Impedance of segment: Zs =RΔz+jωLΔz=(R+jωL)Δz 
● Shunt Admittance of segment: Ysh =GΔz+jωCΔz=(G+jωC)Δz 

Now, let's apply Kirchhoff's Laws to this small segment: 

1. Kirchhoff's Voltage Law (KVL) around the loop: Consider the voltage at 
point z, V(z), and the voltage at point z+Δz, V(z+Δz). As current I(z) flows 
through the series impedance of the segment, there's a voltage 
drop.V(z+Δz)=V(z)−I(z)(RΔz+jωLΔz) 
Rearranging:V(z+Δz)−V(z)=−I(z)(R+jωL)Δz Dividing by Δz and taking the 
limit as Δz→0 (which turns the difference into a 
derivative):dzdV(z) =−(R+jωL)I(z) (Equation 2.2.1 - Voltage Differential 
Equation) This equation tells us that the rate of change of voltage along 
the line is proportional to the current and the series impedance per unit 
length. 

2. Kirchhoff's Current Law (KCL) at the node: Consider the current 
entering the segment at z, I(z), and the current leaving at z+Δz, I(z+Δz). 
Some current also "leaks" through the shunt admittance due to the 
voltage V(z).I(z+Δz)=I(z)−V(z)(GΔz+jωCΔz) 
Rearranging:I(z+Δz)−I(z)=−V(z)(G+jωC)Δz Dividing by Δz and taking the 
limit as Δz→0:dzdI(z) =−(G+jωC)V(z) (Equation 2.2.2 - Current Differential 
Equation) This equation tells us that the rate of change of current along 
the line is proportional to the voltage and the shunt admittance per unit 
length. 

Now, we have two coupled first-order differential equations. To solve them, we 
can differentiate one with respect to z and substitute the other: 

Differentiate Equation 2.2.1 with respect to z:dz2d2V(z) =−(R+jωL)dzdI(z)  



Now, substitute Equation 2.2.2 into 
this:dz2d2V(z) =−(R+jωL)[−(G+jωC)V(z)]dz2d2V(z) =(R+jωL)(G+jωC)V(z) 

Let's define the propagation constant squared as γ2:γ2=(R+jωL)(G+jωC) 

So, the voltage equation becomes a standard second-order linear differential 
equation:dz2d2V(z) =γ2V(z) 

The general solution for this type of differential equation is a sum of two 
exponential terms:V(z)=V0+ e−γz+V0− e+γz (General Voltage Solution) 

Similarly, if we differentiated Equation 2.2.2 and substituted Equation 2.2.1, we 
would get the same form for the current:dz2d2I(z) =γ2I(z) With the general 
solution:I(z)=I0+ e−γz+I0− e+γz (General Current Solution) 

Let's understand the terms: 

● The term V0+ e−γz represents the forward-traveling wave. The e−γz 
indicates that the wave's amplitude decreases as it propagates in the 
positive z direction (towards the load) due to attenuation (α) and its 
phase shifts (−βz). V0+  is the amplitude of this wave at z=0. 

● The term V0− e+γz represents the backward-traveling (reflected) wave. 
The e+γz indicates that this wave's amplitude decreases as it 
propagates in the negative z direction (back towards the source) and its 
phase shifts (+βz). V0−  is the amplitude of this wave at z=0. 

Finally, to find the relationship between V0+  and I0+ , and V0−  and I0− , we 
substitute the voltage solution back into Equation 
2.2.1:dzd (V0+ e−γz+V0− e+γz)=−(R+jωL)I(z)(−γV0+ e−γz+γV0− e+γz)=−(R+jωL)I(z)I
(z)=R+jωLγ (V0+ e−γz−V0− e+γz) 

We know that the characteristic impedance Z0 =G+jωCR+jωL  . Also, 

γ=(R+jωL)(G+jωC)  . So, Z0 =γR+jωL . (Alternatively, Z0 =G+jωCγ ) 

Substituting Z0  into the equation for I(z):I(z)=Z0 1 (V0+ e−γz−V0− e+γz) 

Therefore, the complete solutions for voltage and current along the 
transmission line are:V(z)=V0+ e−γz+V0− e+γzI(z)=Z0 V0+  e−γz−Z0 V0−  e+γz 



The negative sign for the reflected current term (−Z0 V0−  ) signifies that the 
direction of the reflected current wave is opposite to that of the incident 
current wave relative to the propagation direction. 

Characteristic Impedance, Propagation Constant, Attenuation Constant, Phase 
Constant: 

We've already introduced these in detail in Section 2.1, but let's re-emphasize 
their importance and provide precise formulas: 

● Characteristic Impedance (Z0 ): 
○ Definition: The impedance seen looking into an infinitely long line, 

or a line terminated with its characteristic impedance. It's the ratio 
of voltage to current for a pure forward-traveling wave. 

○ Formula: Z0 =G+jωCR+jωL   (Ohms, Ω) 

○ For lossless lines (R=0, G=0): Z0 =CL   (real and purely 
resistive) 

● Propagation Constant (γ): 
○ Definition: A complex number describing how a wave changes in 

both amplitude and phase per unit length as it propagates. 

○ Formula: γ=(R+jωL)(G+jωC)   (per meter, 1/m) 
○ It is composed of two parts: γ=α+jβ. 

● Attenuation Constant (α): 
○ Definition: The real part of γ, representing the rate at which the 

wave's amplitude decays due to losses (resistance in conductors, 
leakage in dielectric). 

○ Formula: α=Re((R+jωL)(G+jωC)  ) (Nepers/meter, Np/m) 
○ For lossless lines: α=0 

● Phase Constant (β): 
○ Definition: The imaginary part of γ, representing the phase shift 

per unit length as the wave propagates. It dictates the wavelength 
and phase velocity on the line. 



○ Formula: β=Im((R+jωL)(G+jωC)  ) (Radians/meter, rad/m) 

○ For lossless lines: β=ωLC   

Numerical Example: Voltage and Current on a Lossless Line 

Let's use the lossless line from the previous example:Z0 =50 Ohmsβ=10π 
rad/m Assume V0+ =10 V (amplitude of the incident wave at the load, z=0) 
Assume the load is ZL =100 Ohms. 

First, we need to find the reflected wave amplitude, V0− . This requires 
calculating the reflection coefficient at the 
load:ΓL =ZL +Z0 ZL −Z0  =100+50100−50 =15050 =31  

Since ΓL =V0− /V0+ , we have:V0− =ΓL V0+ =(1/3)×10 V=3.33 V 

Now, we can write the voltage and current equations for any point z (distance 
from the load, where z=0 is at the load): 

For a lossless line, γ=jβ. So, e−γz=e−jβz and e+γz=e+jβz. 

V(z)=V0+ e−jβz+V0− e+jβzV(z)=10e−j10πz+3.33e+j10πz 

I(z)=Z0 V0+  e−jβz−Z0 V0−  e+jβzI(z)=5010 e−j10πz−503.33 e+j10πzI(z)=0.2e−j10πz−0
.0666e+j10πz 

Let's find the voltage and current at a specific point, for example, at z=λ/4: We 
found λ=0.2 m, so λ/4=0.05 m. At z=0.05 m:βz=(10π)(0.05)=0.5π=π/2 rad=90∘ 

e−jβz=e−jπ/2=cos(−π/2)+jsin(−π/2)=0−j1=−je+jβz=e+jπ/2=cos(π/2)+jsin(π/2)=0+
j1=+j 

Voltage at z=λ/4:V(λ/4)=10(−j)+3.33(+j)=−j10+j3.33=−j6.67 V The magnitude of 
the voltage is ∣V(λ/4)∣=6.67 V. 

Current at z=λ/4:I(λ/4)=0.2(−j)−0.0666(+j)=−j0.2−j0.0666=−j0.2666 A The 
magnitude of the current is ∣I(λ/4)∣=0.2666 A. 

The instantaneous voltage and current waveforms on the line would be the 
real part of these complex phasors, multiplied by ejωt. This example clearly 
shows how voltage and current vary along the line due to the superposition of 
forward and reflected waves. 



2.3 Wave Propagation on Transmission Lines 

Forward and reflected waves: 

As established, the total voltage and current at any point z on the transmission 
line are the result of the superposition of two distinct waves: 

● Forward (Incident) Wave: This wave originates from the source and 
travels unimpeded towards the load. Its voltage is V+(z)=V0+ e−γz and its 
current is I+(z)=Z0 V0+  e−γz. Its phase advances as z increases 
(assuming positive z direction is towards the load), and its amplitude 
may decrease due to attenuation. 

● Reflected (Backward) Wave: This wave is generated when the forward 
wave encounters a discontinuity or a load impedance that is not 
perfectly matched to the characteristic impedance of the line. A portion 
of the forward wave's energy is reflected back towards the source. Its 
voltage is V−(z)=V0− e+γz and its current is I−(z)=−Z0 V0−  e+γz. Its phase 
advances as z decreases (since it's traveling in the negative z direction), 
and its amplitude also decreases as it travels due to attenuation. The 
negative sign in the current term signifies that the reflected current 
wave's direction is opposite to the incident current wave's direction, 
relative to the local voltage polarity. 

The total voltage and current at any point z are given 
by:V(z)=V+(z)+V−(z)I(z)=I+(z)+I−(z) 

Voltage and Current Standing Waves: 

When both forward and reflected waves exist on a transmission line (i.e., when 
the load is not perfectly matched to Z0 ), they interfere constructively and 
destructively along the line. This interference creates a stable, non-traveling 
pattern of voltage and current amplitude variations called standing waves. 
While the individual forward and reflected waves are traveling, their 
superposition creates a pattern that appears "standing" in place, with fixed 
points of maximum and minimum amplitude. 

● Characteristics of Standing Waves: 
○ Nodes: Points along the line where the voltage (or current) 

amplitude is at a minimum. For a perfect reflection, the minimum 
can be zero. 

○ Antinodes: Points along the line where the voltage (or current) 
amplitude is at a maximum. 

○ The distance between two successive voltage maxima (or minima) 
is exactly half a wavelength (λ/2). 



○ The distance between a voltage maximum and an adjacent voltage 
minimum is a quarter wavelength (λ/4). 

○ Crucially, at any point on the line, where the voltage is at a 
maximum, the current will be at a minimum, and vice-versa. This 
is because the reflection coefficient for current is the negative of 
the reflection coefficient for voltage. 

For a lossless line (α=0, so 
γ=jβ):V(z)=V0+ e−jβz+V0− ejβzI(z)=Z0 V0+  e−jβz−Z0 V0−  ejβz 

The magnitude of the voltage along the line, ∣V(z)∣, will show a sinusoidal 
variation if there are standing waves. The peaks correspond to antinodes, and 
the valleys to nodes. The ratio of the maximum voltage to the minimum voltage 
in this standing wave pattern is a key indicator of mismatch, as we will see 
with VSWR. 

Reflection Coefficient (Γ): 

The reflection coefficient is a complex quantity that quantifies the proportion 
of an incident wave that is reflected from a discontinuity or a load. It's defined 
as the ratio of the complex amplitude of the reflected voltage wave to the 
complex amplitude of the incident voltage wave at a given point on the line. 

● Reflection Coefficient at the Load (ΓL ): This is the most common 
reflection coefficient used, defined at the very end of the line, where the 
load impedance ZL  is connected (at z=0):ΓL =V+(0)V−(0) =V0+ V0−   It can 
also be expressed directly in terms of the load impedance (ZL ) and the 
characteristic impedance (Z0 ) of the transmission line:ΓL =ZL +Z0 ZL −Z0   

● Properties of ΓL : 
○ It is a complex number: ΓL =∣ΓL ∣∠ϕL , where ∣ΓL ∣ is the 

magnitude and ϕL  is the phase angle. 
○ Magnitude (∣ΓL ∣): This value indicates the fraction of the incident 

voltage that is reflected. It ranges from 0 to 1. 
■ ∣ΓL ∣=0: Indicates a perfect match (ZL =Z0 ). No reflection 

occurs, and all incident power is delivered to the load. This 
is the ideal scenario. 

■ ∣ΓL ∣=1: Indicates total reflection. This happens when the 
load is a perfect short circuit (ZL =0) or a perfect open 
circuit (ZL =∞). All incident power is reflected back. 

■ 0<∣ΓL ∣<1: Partial reflection. Some power is absorbed by the 
load, and some is reflected. 

○ Phase (ϕL ): This angle indicates the phase relationship between 
the reflected voltage wave and the incident voltage wave at the 
load. For example, a ϕL =180∘ (or −π radians) means the reflected 
wave is exactly out of phase with the incident wave. 



● Reflection Coefficient at any point z from the load: If you know ΓL , you 
can find the reflection coefficient Γ(l) at any point at a distance l 
(measured from the load back towards the source, so z=−l) on the 
transmission line:Γ(l)=ΓL e−2γl For a lossless line (γ=jβ):Γ(l)=ΓL e−j2βl 
This formula shows that as you move along a lossless transmission 
line, the magnitude of the reflection coefficient remains constant 
(∣Γ(l)∣=∣ΓL ∣), but its phase rotates at a rate of 2β radians per unit length. 
This rotation is crucial for using the Smith Chart. 

Voltage Standing Wave Ratio (VSWR): 

VSWR (often pronounced "vis-war") is a scalar (non-negative real) quantity 
that provides a direct measure of the magnitude of standing waves on a 
transmission line. It is one of the most important practical parameters in RF 
engineering. 

● Definition: VSWR is defined as the ratio of the maximum voltage 
amplitude to the minimum voltage amplitude along a transmission line 
that has standing waves:VSWR=∣V∣min ∣V∣max   where ∣V∣max  is the 
maximum voltage magnitude and ∣V∣min  is the minimum voltage 
magnitude in the standing wave pattern. 

● Relationship to Reflection Coefficient: VSWR is directly and uniquely 
related to the magnitude of the reflection coefficient 
(∣Γ∣):VSWR=1−∣Γ∣1+∣Γ∣  This formula highlights the direct link between 
mismatch and standing waves. 

● Interpretation of VSWR: 
○ VSWR = 1: This is the ideal case. It means ∣Γ∣=0, implying a 

perfect match (ZL =Z0 ). There are no reflections, no standing 
waves, and maximum power is delivered to the load. In this case, 
∣V∣max =∣V∣min . 

○ VSWR > 1: This indicates the presence of reflections and standing 
waves. The higher the VSWR value, the greater the mismatch 
between the load and the characteristic impedance of the line, and 
the larger the percentage of power reflected back towards the 
source. 

○ VSWR = ∞ (infinity): This occurs when ∣Γ∣=1. This signifies a 
complete reflection (e.g., a short-circuited or open-circuited line), 
where the minimum voltage along the line is zero. 

Numerical Example: Reflection Coefficient and VSWR 

A 75 Ohm coaxial cable (Z0 =75 Ω) is connected to an antenna with an 
impedance ZL =30−j40 Ω at a frequency of 50 MHz. 



1. Calculate the reflection coefficient at the load 
(ΓL ):ΓL =ZL +Z0 ZL −Z0  =(30−j40)+75(30−j40)−75 =105−j40−45−j40  
To simplify this complex division, we multiply the numerator and 
denominator by the complex conjugate of the 
denominator:ΓL =(105−j40)(−45−j40) ×(105+j40)(105+j40)  Numerator: 
(−45)(105)+(−45)(j40)−(j40)(105)−(j40)(j40)=−4725−j1800−j4200−j21600=−4
725−j6000+1600=−3125−j6000 
Denominator: (105)2+(40)2=11025+1600=12625 
So, ΓL =12625−3125−j6000 ΓL =12625−3125 −j126256000 ≈−0.2475−j0.4752 
Now, find the magnitude and phase of ΓL : Magnitude: 

∣ΓL ∣=(−0.2475)2+(−0.4752)2  =0.06125+0.2258  =0.28705

 ≈0.5358 
Phase: ϕL =arctan(−0.2475−0.4752 ) Since both real and imaginary parts 
are negative, the angle is in the third quadrant.ϕL =arctan(1.92)≈62.5∘. In 
the third quadrant, this is 62.5∘−180∘=−117.5∘. So, ΓL ≈0.5358∠−117.5∘ 

2. Calculate the 
VSWR:VSWR=1−∣ΓL ∣1+∣ΓL ∣ =1−0.53581+0.5358 =0.46421.5358 ≈3.308 
A VSWR of 3.308 indicates a significant mismatch between the antenna 
and the cable. This means a substantial portion of the power sent to the 
antenna will be reflected back, reducing antenna efficiency and 
potentially causing issues for the transmitting equipment. 

2.4 Terminated Transmission Lines 

The way a transmission line behaves is fundamentally determined by the 
electrical impedance connected at its end, known as the load impedance (ZL ). 
Understanding these termination conditions is crucial for designing and 
troubleshooting RF systems. 

Short-circuited line (ZL =0): 

When a transmission line is terminated with a short circuit (a direct connection 
between the conductors, effectively ZL =0 Ohms), the behavior is unique: 

● Reflection Coefficient:ΓL =ZL +Z0 ZL −Z0  =0+Z0 0−Z0  =Z0 −Z0  =−1 In polar 
form, ΓL =1∠180∘ (or 1∠−π radians). This means the entire incident 
voltage wave is reflected, but with a 180-degree phase shift (it flips 
polarity). 



● Voltage and Current at the Load: At the short circuit (z=0), the voltage 
must be zero: V(0)=V0+ +V0− =0. This implies V0− =−V0+ , which matches 
ΓL =−1. The current at the short circuit will be maximum. 

● Standing Waves: A perfect standing wave is formed. 
○ There is a voltage node (minimum voltage, ideally zero) at the 

short circuit. 
○ There is a current antinode (maximum current) at the short circuit. 
○ As you move away from the short circuit along the line, the 

voltage and current vary sinusoidally. The next voltage maximum 
(antinode) will occur at a distance of λ/4 from the short circuit, 
then a voltage node at λ/2, and so on. 

Open-circuited line (ZL =∞): 

When a transmission line is terminated with an open circuit (the conductors 
are not connected, ZL =∞ Ohms), the behavior is also distinct: 

● Reflection Coefficient:ΓL =ZL +Z0 ZL −Z0   To evaluate this when ZL →∞, we 
can divide the numerator and denominator by ZL :ΓL =1+Z0 /ZL 1−Z0 /ZL   As 
ZL →∞, Z0 /ZL →0. So, ΓL =1+01−0 =1 In polar form, ΓL =1∠0∘. This means 
the entire incident voltage wave is reflected with no phase shift. 

● Voltage and Current at the Load: At the open circuit (z=0), the current 
must be zero: I(0)=Z0 V0+  −Z0 V0−  =0. This implies V0+ =V0− , which 
matches ΓL =1. The voltage at the open circuit will be maximum. 

● Standing Waves: A perfect standing wave is formed. 
○ There is a current node (minimum current, ideally zero) at the 

open circuit. 
○ There is a voltage antinode (maximum voltage) at the open circuit. 
○ As you move away from the open circuit, the voltage and current 

vary sinusoidally, but shifted by λ/4 compared to the 
short-circuited case. The next voltage node will occur at λ/4 from 
the open circuit. 

Matched line (ZL =Z0 ): 

This is the most desirable termination condition in most RF applications. 
When a transmission line is terminated with a load impedance that is exactly 
equal to its characteristic impedance (ZL =Z0  Ohms), it is called a matched line. 

● Reflection Coefficient:ΓL =Z0 +Z0 Z0 −Z0  =2Z0 0 =0 
● No Reflection: This is the key outcome. Since ΓL =0, there is no reflected 

wave. All the incident power is absorbed by the load. 
● No Standing Waves: With no reflected wave, there is no interference 

pattern, so no standing waves are formed. The voltage and current 
amplitudes remain constant along the line. 



● VSWR: For a matched line, VSWR=(1+∣Γ∣)/(1−∣Γ∣)=(1+0)/(1−0)=1. This is 
the ideal VSWR. 

● Maximum Power Transfer: A matched termination ensures that the 
maximum possible power is transferred from the transmission line to 
the load, as none is reflected back. This is a fundamental principle of 
power transfer in RF systems. 

Input impedance of a transmission line: 

The input impedance (Zin ) of a transmission line is the impedance that you 
"see" looking into the line from a particular point, usually at the input 
terminals of the line. It's not necessarily the characteristic impedance, and it 
varies depending on the load impedance (ZL ), the characteristic impedance 
(Z0 ), and the electrical length of the line (l). 

The general formula for the input impedance of a transmission line of length l 
(measured from the load, so the point where you're looking in is at z=−l) is: 

Zin (l)=Z0 Z0 +ZL tanh(γl)ZL +Z0 tanh(γl)  

● Where: 
○ Z0  is the characteristic impedance of the line. 
○ ZL  is the load impedance. 
○ γ is the propagation constant (α+jβ). 
○ l is the length of the transmission line from the load. 
○ tanh is the hyperbolic tangent function. 

This general formula applies to both lossy and lossless lines. 

For a lossless transmission line (where α=0, so γ=jβ), the formula simplifies 
significantly because tanh(jθ)=jtan(θ). Substituting 
γl=jβl:Zin (l)=Z0 Z0 +jZL tan(βl)ZL +jZ0 tan(βl)  

This lossless input impedance formula is extremely important and widely used 
in RF design because many practical transmission lines are designed to be 
low-loss. It shows how the load impedance effectively "transforms" as you 
move along the line. 

Special cases for lossless input impedance: 

These special cases are critical for understanding how transmission line 
sections can be used as circuit elements (like inductors, capacitors, or 
transformers) at RF. 

● Short-circuited line (ZL =0): If the line is short-circuited (ZL =0), the 
formula 



becomes:Zin,sc (l)=Z0 Z0 +j(0)tan(βl)0+jZ0 tan(βl) =Z0 Z0 jZ0 tan(βl) Zin,sc (l)=j
Z0 tan(βl) 

○ Interpretation: The input impedance of a short-circuited lossless 
line is purely reactive (imaginary). 

■ If 0<βl<π/2 (i.e., 0<l<λ/4), then tan(βl) is positive, so Zin,sc  is 
positive imaginary, meaning it behaves as an inductor. 

■ If π/2<βl<π (i.e., λ/4<l<λ/2), then tan(βl) is negative, so 
Zin,sc  is negative imaginary, meaning it behaves as a 
capacitor. 

■ At l=λ/4 (βl=π/2), tan(βl) is infinite, so Zin,sc =j∞ (behaves as 
an open circuit!). 

■ At l=λ/2 (βl=π), tan(βl)=0, so Zin,sc =0 (behaves as a short 
circuit!). 

● Open-circuited line (ZL =∞): If the line is open-circuited (ZL =∞), we can't 
directly substitute ∞. Instead, we divide the numerator and denominator 
of the lossless input impedance formula by 
ZL :Zin,oc (l)=Z0 Z0 /ZL +j(ZL /ZL )tan(βl)ZL /ZL +j(Z0 /ZL )tan(βl) Zin,oc (l)=Z0 Z0 /
ZL +jtan(βl)1+j(Z0 /ZL )tan(βl)  As ZL →∞, Z0 /ZL →0. So, 
Zin,oc (l)=Z0 0+jtan(βl)1+j(0)tan(βl) =Z0 jtan(βl)1 =−jZ0 cot(βl) 

○ Interpretation: The input impedance of an open-circuited lossless 
line is also purely reactive. It behaves opposite to the 
short-circuited line. 

■ If 0<l<λ/4, then cot(βl) is positive, so Zin,oc  is negative 
imaginary, meaning it behaves as a capacitor. 

■ If λ/4<l<λ/2, then cot(βl) is negative, so Zin,oc  is positive 
imaginary, meaning it behaves as an inductor. 

■ At l=λ/4 (βl=π/2), cot(βl)=0, so Zin,oc =0 (behaves as a short 
circuit!). 

■ At l=λ/2 (βl=π), cot(βl) is infinite, so Zin,oc =−j∞ (behaves as 
an open circuit!). 

● Quarter-wave transformer (l=λ/4): When the length of a lossless 
transmission line is exactly a quarter-wavelength (l=λ/4), then 
βl=(2π/λ)(λ/4)=π/2. At this length, tan(βl) approaches infinity. To evaluate 
the formula, we use the trick of dividing numerator and denominator by 
tan(βl):Zin (λ/4)=Z0 Z0 /tan(βl)+jZL ZL /tan(βl)+jZ0   As tan(βl)→∞, terms like 
ZL /tan(βl) go to 0.Zin (λ/4)=Z0 0+jZL 0+jZ0  =Z0 jZL jZ0  =ZL Z02   

○ Interpretation: A quarter-wavelength section of transmission line 
acts as an impedance transformer. It can transform a purely 
resistive load ZL  to a different purely resistive input impedance 
Zin . This is widely used for impedance matching. 

Numerical Example: Input Impedance Calculation 



A lossless transmission line has Z0 =50 Ω. It operates at a frequency where the 
wavelength on the line is λ=1 m. The line is 0.15 m long. Calculate the input 
impedance for the following termination conditions: 

First, calculate β: β=2π/λ=2π/1 rad/m=2π rad/m. Then, calculate βl: 
βl=(2π)(0.15)=0.3π rad=54∘. Now, tan(βl)=tan(54∘)≈1.376. 

1. Terminated with a load ZL =25 Ω (purely 
resistive):Zin (l)=Z0 Z0 +jZL tan(βl)ZL +jZ0 tan(βl) Zin (0.15 
m)=5050+j25(1.376)25+j50(1.376) Zin =5050+j34.425+j68.8  
To simplify, perform complex 
division:Zin =50(50+j34.4)(50−j34.4)(25+j68.8)(50−j34.4)  Numerator: 
(25)(50)+(25)(−j34.4)+(j68.8)(50)+(j68.8)(−j34.4)=1250−j860+j3440+2366.72
=3616.72+j2580 Denominator: (50)2+(34.4)2=2500+1183.36=3683.36 
Zin =503683.363616.72+j2580 =50(0.982+j0.700)Zin ≈49.1+j35.0 Ω The input 
impedance is complex, meaning it has both a resistive and an inductive 
(positive reactive) component. 

2. Short-circuited line (ZL =0):Zin,sc (l)=jZ0 tan(βl)Zin,sc (0.15 
m)=j50tan(54∘)Zin,sc =j50(1.376)=j68.8 Ω This confirms it behaves as a 
pure inductor. 

3. Open-circuited line 
(ZL =∞):Zin,oc (l)=−jZ0 cot(βl)cot(βl)=1/tan(βl)=1/1.376≈0.726Zin,oc (0.15 
m)=−j50(0.726)=−j36.3 Ω This confirms it behaves as a pure capacitor. 

2.5 Smith Chart 

The Smith Chart is an ingenious graphical tool that simplifies complex 
calculations involving transmission lines, particularly for visualizing 
impedance transformations and designing impedance matching networks. It 
converts the often tedious complex number arithmetic into intuitive graphical 
manipulations. 

Introduction and construction of the Smith Chart: 

The Smith Chart is essentially a special type of polar plot where the entire 
complex plane of the reflection coefficient (Γ) is mapped to a circular region, 
and superimposed on this region are a series of interconnected circles and 
arcs that represent corresponding impedance (or admittance) values. 

Conceptual Construction: 

Imagine a standard Cartesian coordinate system where the horizontal axis is 
the real part of Γ (Re(Γ)) and the vertical axis is the imaginary part (Im(Γ)). The 
unit circle (a circle with radius 1 centered at the origin) on this plane 
represents all possible reflection coefficients where ∣Γ∣=1. All practical 



reflection coefficients (where some power is absorbed by the load) will lie 
inside this unit circle. 

The magic of the Smith Chart lies in how points within this Γ plane are 
transformed into impedance values. This transformation is achieved by 
plotting two families of circles: 

1. Constant Resistance Circles: 
○ These are circles that are tangent to the outer boundary of the 

Smith Chart at the far right point (which represents infinite 
impedance, open circuit). 

○ Each circle represents a specific constant value of normalized 
resistance (r=R/Z0 ). 

○ The largest constant resistance circle (the outer boundary) 
represents r=0 (purely reactive impedance). 

○ The center of the Smith Chart represents r=1 (the characteristic 
impedance Z0 ). This is the ideal matched point. 

○ As you move from the outer boundary towards the center, the 
constant resistance circles represent increasing values of 
resistance. 

2. Constant Reactance Arcs: 
○ These are arcs that also originate from the far right point of the 

chart (the infinite impedance point). 
○ Each arc represents a specific constant value of normalized 

reactance (x=X/Z0 ). 
○ Arcs above the horizontal (real) axis correspond to positive 

reactance (+jx), which means the impedance is inductive. 
○ Arcs below the horizontal (real) axis correspond to negative 

reactance (−jx), which means the impedance is capacitive. 
○ The horizontal line passing through the center of the chart 

represents x=0 (purely resistive impedance). 

Physical Layout of the Chart: 

● Outer Circle: The outermost circle represents ∣Γ∣=1. This boundary 
contains all physically realizable impedances (passive loads). 

● Center Point: The very center of the chart represents Γ=0, which 
corresponds to a perfect match (ZL =Z0 ). 

● Horizontal Axis: This line, running horizontally through the center, 
represents purely real impedances (X=0). Values to the right of the 
center are resistive and inductive, values to the left are resistive and 
capacitive. The point where this axis intersects the outer boundary on 
the far right is the open-circuit point (ZL =∞). The point where it 
intersects the outer boundary on the far left is the short-circuit point 
(ZL =0). 



● Wavelengths Towards Generator/Load Scales: Along the outer edge of 
the chart, there are usually concentric scales indicating "Wavelengths 
Toward Generator" (clockwise) and "Wavelengths Toward Load" 
(counter-clockwise). These scales are used for impedance 
transformations along transmission lines. 

Plotting impedances, admittances, reflection coefficients: 

The Smith Chart allows you to represent and convert between impedance, 
admittance, and reflection coefficient. 

1. Normalization is Key: Before anything else, all impedance and 
admittance values must be normalized to the characteristic impedance 
(Z0 ) of the transmission line you are working with. 

○ Normalized Impedance: zL =ZL /Z0 =r+jx Example: If Z0 =50 Ω and 
ZL =100+j75 Ω, then zL =(100+j75)/50=2+j1.5. 

○ Normalized Admittance: yL =YL /Y0 =g+jb (where Y0 =1/Z0 ). 
Example: If Z0 =50 Ω (Y0 =1/50=0.02 S), and a normalized 
admittance yL =0.5−j0.2, then YL =0.02(0.5−j0.2)=0.01−j0.004 S. 

2. Plotting Impedances: 
○ Once you have the normalized impedance zL =r+jx, find the 

intersection of the constant resistance circle corresponding to r 
and the constant reactance arc corresponding to x. This 
intersection point uniquely represents zL  on the chart. 

○ Example: To plot zL =2+j1.5: Find the circle labeled "2.0" on the 
horizontal axis (this is the r=2 circle). Then find the arc labeled 
"+j1.5" on the chart (this is the x=1.5 arc, it will be above the 
horizontal axis). The point where these two intersect is your zL . 

3. Plotting Admittances: 
○ The Smith Chart can also be used to plot admittances. While 

some charts have separate admittance grids, the most common 
way is to leverage the impedance grid: 

○ Method 1 (180-degree rotation): To find the normalized admittance 
yL =g+jb corresponding to a given normalized impedance zL =r+jx, 
simply plot zL  first. Then, draw a straight line from zL  through the 
center of the Smith Chart to the opposite side. The point where 
this line intersects the constant resistance/reactance grid on the 
opposite side represents yL . This is because yL =1/zL , and the 
Smith Chart is designed so that rotating a point by 180 degrees 
around the center performs this inversion. 

○ Example: If zL =2+j1.5 is plotted, rotating it 180 degrees through 
the center would give you yL ≈0.30−j0.22 (visually). 

4. Reading Reflection Coefficients: 



○ Every point on the Smith Chart corresponds to a unique complex 
reflection coefficient (Γ). 

○ To find Γ for a plotted impedance (or admittance) point: 
■ Draw a line from the center of the chart to the plotted point. 
■ The magnitude (∣Γ∣): Use the linear scale (often found at 

the bottom of the chart, labeled "Reflection Coefficient 
Magnitude" or similar) to measure the length of this line, 
scaled by the radius of the outermost circle. This will give 
you a value between 0 and 1. 

■ The phase (ϕ): Read the angle where this line intersects the 
outermost scale (labeled "Angle of Reflection Coefficient in 
Degrees" or "Phase in Degrees"). The angle is usually 
measured counter-clockwise from the positive real axis. 

○ Example: If your point is at the center, ∣Γ∣=0. If it's on the outer 
boundary, ∣Γ∣=1. If zL =2+j1.5 is plotted, drawing a line from the 
center to this point and reading the scales would give you 
∣Γ∣≈0.58 and ϕ≈28∘. 

Applications of Smith Chart for impedance transformation and matching: 

The Smith Chart's power truly shines in visualizing and performing impedance 
transformation and matching. 

● Impedance Transformation along a Transmission Line: 
○ As a wave travels along a lossless transmission line, the 

magnitude of its reflection coefficient (∣Γ∣) remains constant, but 
its phase changes. On the Smith Chart, this corresponds to 
moving along a constant ∣Γ∣ circle (a circle centered at the origin 
of the chart). 

○ Direction of Movement: 
■ Moving clockwise on the Smith Chart corresponds to 

moving along the transmission line towards the generator 
(source). 

■ Moving counter-clockwise on the Smith Chart corresponds 
to moving along the transmission line towards the load. 

○ Distance Scale: The outer scales labeled "Wavelengths Toward 
Generator" and "Wavelengths Toward Load" indicate the electrical 
length traveled along the line. A complete circle on the Smith 
Chart (360 degrees of rotation of Γ's phase) corresponds to 
moving λ/2 (half a wavelength) along the transmission line. This is 
because the phase of Γ(l)=ΓL e−j2βl changes by 2βl, and 
2β(λ/2)=2(2π/λ)(λ/2)=2π (360 degrees). 

● Impedance Matching: 



○ The primary goal of impedance matching is to transform a given 
load impedance (ZL ) into the characteristic impedance (Z0 ) of the 
transmission line, or more generally, to match a load to a specific 
source impedance (often the conjugate of the source impedance 
for maximum power transfer). This ensures maximum power 
delivery and minimal reflections (VSWR = 1). 

○ The Smith Chart provides a graphical method to design 
impedance matching networks, which typically involve adding 
reactive components (inductors and capacitors) or sections of 
transmission line. 

Common Matching Techniques (using Smith Chart): 

1. Single-Stub Matching (Shunt Stub): 
○ This technique involves adding a single short-circuited or 

open-circuited transmission line stub in parallel with the main 
transmission line at a specific distance from the load. 

○ Steps (conceptual): 
1. Normalize the load impedance (ZL ) to zL =ZL /Z0  and plot it 

on the Smith Chart. 
2. Convert to normalized admittance (yL ): Rotate zL  by 180 

degrees around the center to get yL . (This is done because 
the stub will be in parallel, and parallel components are 
added as admittances). 

3. Move along the constant ∣Γ∣ circle (from yL ) towards the 
generator until the point intersects the g=1 circle (the 
constant conductance circle that passes through the center 
of the chart). This point, let's call it y1 =1+jb1 , means the 
resistive part of the admittance is now perfectly matched to 
Y0  (since g=1). The distance moved on the chart (read from 
the "Wavelengths Toward Generator" scale) gives you the 
length (d) of the main transmission line from the load to 
where the stub should be connected. 

4. Add a shunt stub to cancel the susceptance (jb1 ): At point 
y1 , you have a remaining reactive part (jb1 ). To cancel this, 
you need to add a stub in parallel that provides a 
susceptance of −jb1 . 

■ If b1  is positive (inductive susceptance), you need a 
capacitive stub (negative susceptance). 

■ If b1  is negative (capacitive susceptance), you need 
an inductive stub (positive susceptance). 

5. Determine stub length: Find the short-circuit point (ZL =0, 
leftmost point on the outer circle) or open-circuit point 
(ZL =∞, rightmost point on the outer circle) on the chart. 



From this point, move along the outer circle (which 
represents pure reactances/susceptances) towards the 
generator until you reach the point corresponding to the 
desired susceptance (e.g., −jb1 ). The distance traveled on 
the "Wavelengths Toward Generator" scale gives you the 
required length of the stub (lstub ). 

2. L-Section Matching (Lumped Elements): 
○ This technique uses a combination of a series and a parallel 

lumped reactive component (an inductor and/or a capacitor) to 
achieve a match. There are usually two possible L-sections for 
any given mismatch. 

○ Steps (conceptual): 
1. Normalize the load impedance (ZL ) to zL =r+jx and plot it. 
2. Decide on the first element (series or parallel): 

■ If zL  is outside the r=1 circle, it's often easier to start 
with a series component to bring the resistance 
closer to 1. 

■ If zL  is inside the r=1 circle, it's often easier to start 
by converting to admittance (yL ) and adding a 
parallel component. 

3. Add the first component: 
■ Series component: Move along the constant 

resistance circle (from zL ) until you intersect the r=1 
circle (if starting with series R). The required series 
reactance (Xseries ) is the difference between the 
reactance values of the starting and ending points on 
the arc. 

■ Parallel component (on admittance chart): If you've 
converted to admittance yL , move along the constant 
conductance circle (from yL ) until you intersect the 
g=1 circle. The required parallel susceptance 
(Bparallel ) is the difference between the susceptance 
values. 

4. Add the second component: Once you're on the r=1 circle 
(or g=1 circle), you will have a remaining reactive part. Add 
the second component (either series or parallel, depending 
on the L-section configuration) to cancel this remaining 
reactance/susceptance, bringing the point directly to the 
center of the chart (1+j0). 

Numerical Example: Smith Chart Application (Shunt Stub Matching) 



Let's revisit the previous example of Z0 =75 Ω and a load ZL =30−j40 Ω. We want 
to design a single-stub shunt matching network to match ZL  to the 75 Ohm 
line. 

1. Normalize ZL  and Plot:zL =ZL /Z0 =(30−j40)/75=0.4−j0.533. Plot the point 
(r=0.4,x=−0.533) on the Smith Chart. 

2. Convert to Normalized Admittance (yL ): Draw a line from zL  through the 
center of the chart to the opposite side. This gives yL . (Calculation: 
yL =1/zL =1/(0.4−j0.533)=(0.4+j0.533)/(0.42+0.5332)=(0.4+j0.533)/(0.16+0.28
4)=(0.4+j0.533)/0.444≈0.9+j1.2) So, yL ≈0.9+j1.2. This point should be 
opposite zL  on the chart. 

3. Move Along Constant ∣Γ∣ Circle (towards generator) to g=1 circle: 
Starting from yL ≈0.9+j1.2, trace a constant ∣Γ∣ circle (concentric with 
the chart's outer boundary) in a clockwise direction (Wavelengths 
Towards Generator). We want to find where this path intersects the g=1 
circle (the outer constant conductance circle that passes through the 
chart's center). Visually, following this path, you'll find it intersects the 
g=1 circle at two points. Let's pick the first intersection, which might be 
around y1 =1+j1.6. 

○ Read the "Wavelengths Toward Generator" scale corresponding 
to yL  (let's say it's 0.12 λ). 

○ Read the "Wavelengths Toward Generator" scale corresponding 
to y1 =1+j1.6 (let's say it's 0.20 λ). 

○ The distance d to the stub location is the difference: 
d=0.20λ−0.12λ=0.08λ. (If 0.12λ was smaller than 0.20λ, you might 
have to wrap around the chart, adding 0.5 λ if necessary). 

4. Determine Stub Length for Susceptance Cancellation: At y1 =1+j1.6, we 
have a matched conductance (g=1) but a positive susceptance of +j1.6. 
To match this, we need a shunt stub that provides a susceptance of 
−j1.6. 

○ Since we need negative susceptance, we will use an 
open-circuited stub (because an open-circuited stub can provide 
negative susceptance). 

○ Locate the open-circuit point on the Smith Chart (far right of the 
outer circle, ZL =∞). This corresponds to ystub,in =0. 

○ Move clockwise along the outer edge of the Smith Chart (which 
represents pure susceptance) from the open-circuit point until 
you reach the point −j1.6. 

○ Read the "Wavelengths Toward Generator" scale for the 
open-circuit point (typically 0.25 λ). 

○ Read the "Wavelengths Toward Generator" scale for the point 
−j1.6 (let's say it's 0.07 λ). 

○ The length of the stub lstub  is the difference: 
lstub =0.25λ−0.07λ=0.18λ. (Again, if the target point's wavelength 



value is smaller, you add 0.5 λ to the starting point's value if it 
goes past 0.5 λ on the scale, or use the "Wavelengths Toward 
Load" scale for calculation ease). 

Result: The matching network consists of a 75 Ohm transmission line section 
of length 0.08λ followed by a shunt open-circuited stub of length 0.18λ. This 
setup will transform the 30−j40 Ω load to a 75 Ω input impedance, effectively 
matching the line. 

The Smith Chart makes these complex transformations visually intuitive, 
allowing engineers to quickly design matching networks without extensive 
arithmetic. It's an indispensable tool in RF and microwave engineering. 
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